Competitive energy markets have come a long way in bringing more options to commercial and industrial customers. In ISO-NE, retail electricity providers can now customize pricing offers with dozens of cost components that can be tailored to specific consumer risk requirements. This has allowed buyers to make more strategic procurement decisions based on key operational priorities and energy usage patterns, but it has also added a new layer of complexity to the way energy is priced.

Because there are so many variables at play, GDF SUEZ Energy Resources created the energy pyramid to give buyers a better understanding of electricity pricing components and how they behave from a risk management perspective.

Energy Costs
Six cost components make up the energy portion of the pyramid and can account for nearly 80 percent of a commercial electric bill in ISO-NE. These include hub energy, zonal basis, shape, straddle, imbalance, and losses.

The hubs in hub energy are not physical locations but rather an arithmetic average of electricity prices, determined in bulk wholesale power markets at a particularly liquid pricing point. This component carries a market-based risk that can be mitigated by suppliers who hedge fixed-price exposure on behalf of their customers or by customers who float this component based on the day-ahead or real-time index. Pricing is determined by usage, with location, contract terms, and time of use as key factors in determining overall costs.

Zonal basis – also known as congestion – is the price differential between the hub and load zone that establishes a measure of locational value for various load pricing points. This cost component also carries a market-based risk, which is primarily hedged through swaps or Financial Transmission Rights (FTRs). FTRs are instruments that base charges on hourly day-ahead price differences across the transmission path. Overall pricing is determined by usage, with location, contract terms, and time of use as key factors in determining overall costs.

For both hub energy and zonal basis, it's important to understand that fixed pricing does not include basis to the zone. Energy delivered to the zone is normally included. However, it can be priced at the hub. In that case, basis to the zone is passed through or billed as a line item. Block energy can be priced as either hub energy or zonal energy.

Shape refers to the cost of serving a customer's unique load shape relative to a flat, round-the-clock block over the same time period. Pricing for this component is determined by mapping a customer's unique energy usage pattern against hourly prices. Generally speaking, a lower load factor typically results in a higher shape cost.
This component carries a hybrid of market-based and nonmarket-based risk that can be hedged or mitigated through risk premiums. Customers can change shape charges by shifting their load usage to off-peak hours.

Straddle is the risk premium associated with the volumetric swing provision of a contract. This component covers the risk of the customer’s actual load and price shape varying from the historical load and price shape upon which the pricing offer is based.

Like shape, straddle costs are determined by energy usage patterns. It also carries a hybrid of market-based and nonmarket-based risk that can be hedged or mitigated through risk premiums or contract language that transfers the risk to the customer through wider/narrower tolerance bands.

Imbalance covers the risk of price and load changes between day-ahead schedules/prices and real-time usage/prices. It essentially covers the risk of a customer’s actual load diverging from load forecasts. This cost component, which is also determined by energy usage patterns, carries a hybrid of market-based and nonmarket-based risk that can be mitigated through risk premiums.

Buyers should know that imbalance is included in fixed-price and day-ahead index products and is not applicable in products based on the real-time index. Be aware that fixed price and day-ahead index pricing offers that allow for real-time settlements for both energy and operating costs are based on the supplier’s internal load forecast.

Losses include the cost of energy that is dissipated in transmission and distribution lines. It covers the expense of additional energy that load serving entities are required to supply to the grid to overcome resistance in the transmission and distribution system.

Pricing is determined by energy usage patterns, with zone, contract terms, utility, and voltage class as key factors in determining overall costs. Losses carry a hybrid of market based and non-market-based risk that can be hedged. In a fixed-price product, losses can be included in the cost or passed through as a line item. With an index product, losses can be included in the adder but are more commonly passed through as a line item.

When reviewing a pricing offer, it’s important to determine whether or not this cost component includes both transmission and distribution losses. If the proposal only outlines transmission losses, then distribution losses will be an additional charge at the time of billing.

For a true comparison, it’s essential to determine where and how line losses are accounted for in pricing proposals. Determine if the loss percentage is stated correctly, particularly when the cost component is passed through as a line item, and understand if losses are included in the price or are volume-adjusted as a line item at the time of billing. Although the latter may seem more attractive in a proposal, the actual calculated cost on the bill may be a lot higher than the charge associated with a contract that includes losses in the total price.

Capacity Costs

Capacity costs, which can vary depending on a customer’s individual load factor, can account for nearly 20 percent of a large energy user’s bill.

In ISO-NE, each load serving entity is charged for their daily unforced capacity obligation priced at the applicable zonal capacity price for the delivery year. The intent of the capacity market is to ensure resource adequacy by sending appropriate price signals to encourage resources to provide sufficient and deliverable capacity in locations where it is needed.

Capacity carries a market-based risk that can be hedged or mitigated through risk premiums, a cost adjustment to cover the potential for future changes.

Pricing for the component is based on consumption ($/MW), with contract term, location, and load factor as key aspects in determining ultimate costs. Generally speaking, lower load factors result in higher capacity costs.

When reviewing pricing offers, be sure to know the capacity tag, also known as peak load contribution (PLC), being used to calculate the cost. PLC, which is determined based on an individual consumer’s portion of demand on the total peak load of the electric grid, is established annually for the coming year in June and runs through May. Also, identify the capacity rate upon which the proposal is based. These rates are known several planning years in advance and are available on the independent system operator’s website.
Because this component has a large degree of variability and can be accounted for in various manners by each supplier, it is very important to determine whether your supplier is using the correct PLC for your proposed contract term. Suppliers can use expected PLC or current capacity prices (with true ups), among other tricks. If you are interested in performing an apples-to-apples comparison of supplier offers, look at the details about capacity very closely and check the contract language for capacity true ups or pass through costs.

Ancillary Costs
Ancillary costs support grid reliability and make up about 3 percent of a commercial electric bill for large energy users in ISO-NE.

These pricing variables can be presented differently by each retail electricity provider. The following list outlines the variables included by GDF SUEZ Energy Resources in its pricing proposals for customers in ISO-NE. Other suppliers may categorize certain charges differently or omit them entirely from a proposal.

For example, in components where credits are a factor, GDF SUEZ Energy Resources returns costs to customers when applicable in the fixed price/index adder or as a pass-through item. However, some suppliers retain these credits and omit them from pricing proposals altogether.

To conduct an accurate comparison, be sure to account for all of the costs involved in ancillary services and understand how suppliers treat them in pricing offers. Here is an in-depth look of the costs included in this category by GDF SUEZ Energy Resources.

Net Commitment Period Compensation refers to “make-whole” payments made to generators whose hourly commitment and dispatch by the ISO resulted in a shortfall between the value of resources offered in the energy and regulation markets and the revenue earned from output over the course of the day. Typically, this is the result of operation of resources that are ensuring the overall resource adequacy or transmission security of specific locations or of the entire system.

Forward Reserve Market charges compensate resources providing forward reserves (essentially call options on energy), which are procured through a bi-annual auction process. Forward reserve resources must be assigned in advance of the operating day to ensure they are available in the event of system capacity shortages.

Real-Time Reserve Market charges compensate resources providing reserves in real-time. When real-time reserves become scarce, or the system is re-dispatched to produce a lower overall cost of energy or to maintain reserves, prices for reserve products become non-zero, and resources providing the product(s) are compensated.

Regulation, or Automatic Generation Control (AGC) charges compensate resources necessary to balance supply levels against second-to-second variations in demand.

Transitional Demand Response Program charges compensate demand response (DR) resources that participate in both day-ahead and real-time energy markets where they reduce energy consumption below expected levels.

Inadvertent Energy charges or credits make the market “whole” for the small imbalances between the amount of scheduled external transactions into and out of ISO-NE and the actual metered amounts of these transactions.

Generation Information System charges represent the expenses incurred by the ISO internally and for the third-party, vendor-administered GIS platform. GIS is an emissions reporting and tracking tool that monitors environmental attributes of generated electricity. It is used to provide the information required on energy disclosure labels and to comply with state and regional Renewable Portfolio Standards and emission performance standards.

ISO Administrative Fees recover ISO-NE’s cost of operation. ISO Schedule 2, Energy Administration Service, comprises services associated with the energy market and its accounting. ISO Schedule 3, Reliability Administration Service, comprises services associated with maintaining New England system reliability. NEPOOL Expenses comprise other overhead costs incurred by the ISO.

Auction Revenue Rights are credits allocated to congestion paying load-serving entities (LSEs) from revenues generated from the annual and monthly auction of Financial Transmission Rights.

Marginal Loss Revenue are credits (and occasionally charges) for the over-collection of costs associated with the difference between marginal losses and average losses. Also included in this item are charges or credits for Emergency Energy purchases or sales between ISO-NE and neighboring control areas (i.e., NYISO).
Renewable Portfolio Standards charges comprise the cost of mandated renewable energy purchases required to meet state minimum requirements.

Making the Right Procurement Decision

In the end, there is a lot to think about when shopping for commercial electricity. With a range of variables to consider – from cost components and energy market fundamentals to business cycles and risk tolerance – transparency in pricing offers is essential to building effective energy management strategies.

To support consumers in making clear, confident electricity purchasing decisions, GDF SUEZ Energy Resources created My Energy Navigator, a proprietary decision process designed to simplify energy buying.

Customized energy management plans are created through a three-step process that starts with an initial assessment of unique operating factors, such as key business drivers, budgetary structures, and risk tolerance.

A risk certainty profile is then generated specific to your business along with a pricing proposal that fits your company’s profile. This proposal, which includes detailed information on each cost component of the plan, is fine-tuned with the help of a GDF SUEZ Energy Resources representative. Every aspect of the product is considered by exploring different cost outcomes in real time and adjusting various elements of the proposal.

Commercial and industrial customers ultimately benefit by getting the transparency and insight they need to shop wisely and choose a product that best suits their company and their budget. Before entering into your next energy contract, be sure to consider a supplier like GDF SUEZ Energy Resources that takes the time to understand important business factors, brings clarity to pricing proposals, and helps you build a strategy that makes the most sense for your business.